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Appendix 
Rotational components  in a disturbed gyroscope 

 
 
The rotational components in a disturbed gyroscope are connected to each other by the 

following equation, due to Laplace, which expresses the principle of conservation of energy: 
1)   Jo Ω2  = Jo ω2  + Jp ωp

2  =  Ji ωi 
2 

where: Ω =  speed of rotation of  the  undisturbed gyroscope 
ω =  speed of rotation  of the gyroscope around its main axis 
ωp =  speed of precession 
ωI  =  speed of instantaneous rotation  
Jo  =  main momentum of inertia  
Jp =  momentum of inertia   related  to the precession axis 
Ji  =  momentum of inertia related to the axis of  instantaneous rotation 

The value of the torque developed by a disturbing force Fp, applied to the main axis  of  the 
gyroscope with an angle β, is evidently given by: 

2) Cp  =  R  Fp senβ 
where R  is the arm of the force, that is the distance of his point of application from the 

centre of the gyroscope. 
Instant by instant the gyroscope precedes around an equatorial axis, but the resulting motion 

of he main axis describes a cone, with the axis parallel to the force,  an opening angle of 2 β and 
its vertex at the centre of the gyroscope. The main axis, therefore, appears to rotate with  angular 
speed ωpa around an axis parallel to the disturbing force.  

The value  of  ωpa  is given by the following equation: 

3)   ω
ω

βpa
p

sen
=  

Equations  1), 2) and  3) allow  us to study  exhaustively the behaviour  of a disturbed 
gyroscope, by means of an essentially graphic method. 

 
Given a gyroscope let’s draw, on the basis of its inertia ellipse,  another ellipse whose semi-

axis are respectively:        

                          a
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Every  radius of the ellipse, r(θ) , where: θ = 0 ÷ 2π,  would obviously have  the value: 

r J
J

o
θ

θ
=    

where J θ  is the momentum of inertia of an axis forming an angle θ with the main axis. 
If we put Ω2 = 1 , for equation 1) every radius r(θ) is  proportional to the speed of rotation that 

the gyroscope has to have around axis θ to keep its initial energy  unchanged. 
The end of the arrows representing  Ω and ωi, therefore, always fall on the ellipse, while all 

the other rotational components have to be found  inside  the ellipse.  This  ellipse  allows us to 
analyse exhaustively the behaviour   of all the  rotational components of the gyroscope, bound as 
they are by  equation 1) (see fig.1). 
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                  fig.1 

 
The meaning of the rotational components shown in fig. 1 is easily   understood.  A 

gyroscope subjected to a disturbing  torque  reacts generating an exactly  equal and opposed  
torque.  This is achieved by means of a precession movement, ωp, around an equatorial axis, 
which makes the gyroscope rotate “unbalanced”, that is rotate instant by instant  around  an axis, 
which forms with the main axis an angle β proportional to the disturbing torque.   The 
instantaneous rotation, ωi, is given by  the sum of the rotation  around the main axis, ω, plus  the 
rotation of precession, ωp.  

When a gyroscope is subjected to  a disturbing force Fp,  of increasing value, ωp grows and 
as a consequence ωi  moves towards ωpa. 

When Fp reaches a  certain value Fpa (see calculations further on), we will have: 
ωi = ωpa  
At that precise moment the axis of  instantaneous rotation coincides with  the axis of 

apparent precession, and becomes fixed with respect to both, the space and the gyroscope.  This 
is a very  special condition in which the system composed  by the gyroscope and the disturbing 
torque  behaves like  a non-disturbed gyroscope, with only a single  rotational component, Ω’ (see 
fig. 2). This axis, therefore, becomes the new axis of rotation of the system. 

If at this point force Fp diminishes again, the system behaves like a gyroscope  to which is 
applied  a torque of value: 

C’p = Cpa  - Cp 

Therefore the new axis of rotation begins to precede  around the main axis, moving on the 
surface of a cone. As a consequence ωi’ moves  back  towards  the main axis, following the same 
path it has run along in the previous journey. Value and direction of the gyroscope’s rotational 
components in this case are represented in fig.2 
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fig.2 
 
Due to the principle of conservation of energy we will evidently have: 
   Jpa Ω’2 =  Jo ω’2 + J’pωp’2  =  Ji ωi’

2 = Jo Ω2 
For each value of the disturbing force, Fp, the speed of the instantaneous rotation is exactly 

the same   both ways, there and back, that is ωi’ =  ωi. The other rotational components, instead, 
change considerably and ω’p has direction  opposite to that of ωp .  This is justified  by the fact that 
while Fp is growing, the main  axis rotates around axis ωpa. In  the  “return journey ” the contrary 
happens: it is the axis of ω’ (now fixed  in respect to the body of the gyroscope)  that rotates 
around the main axis.  

The most important fact is that  along the ω’  axis we have a   rotational component which is 
fixed in respect to the gyroscope.  This means that the gyroscope  keeps “memory” of the position  
of the new axis  of rotation.  That rotational component,  therefore the “memory”, is cancelled only 
if and when Fp is completely zeroed. If Fp should not be zeroed , the gyroscope would keep this 
rotational component, and therefore the “memory”, indefinitely. 

 
 
 
 
Behaviour of a semifluid gyroscope like the  Earth 
 
The behaviour of the Earth as a gyroscope is subject to some peculiarities due to the fact 

that the planet is not a homogenous and rigid solid,  but is made up of liquid parts inside and 
outside an intermediate  plastic shell.   

Suppose the planet is hit  by large celestial bodies at high speed. The impact develops an 
impulsive torque, that according to the size and speed of the impacting mass can have a  very 
high peak value,  as high as the highest reaction torque possibly developed by Earth. 

Graphics of fig.1 and fig.2, can help us to understand what happens in this case. 
As soon as the torque developed by the impact starts growing, the ωi moves in the direction 

of ωpa, parallel  to the direction of  impact.  If the impact develops a torque of  sufficient  value, ωi  
will coincides  with ωpa.  On that instant the  axis of ωpa becomes axis of permanent rotation.  As 
soon as the torque value decreases, the axis of ωi returns quickly towards the main axis, but 
following  a different path  as shown in fig. 2.  As soon as the shock ceases, an instant later, the 
Earth  should again return to rotate around its natural  axis, without any further repercussion. But it 
is not necessarily so. 

To cancel the “memory” of the new axis of rotation, and have the gyroscope rotating again 
around the main axis,  it is necessary that  the torque  be completely spent.  Unfortunately, there 
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are good probabilities that  this may not happen.  We know that Earth is permanently subjected to 
a torque  generated by the gravitational forces of the sun and the moon on  the equatorial bulge.   
This torque is millions of times smaller than the one developed by the impact, but its role is 
fundamental. 

If at that moment it has a different  direction than the one developed by the impact itself, as 
soon as the shock is exhausted, the Earth  instantly recovers its previous  axis of rotation and all 
ends there. If,  instead, the torque due to the Sun-Moon attraction has the same direction of the 
torque caused by the celestial body, it is added to this, and contributes  in its small way to the 
instantaneous change of the position of the poles.  A few instants later the shock exhausts itself 
while the Sun-Moon gravitational attraction continues, and however small, it nonetheless  
develops a torque higher than zero. Therefore the “memory”  of the axis around which the Earth  
has rotated during the impact, even for a very  short moment, cannot be cancelled. 

In this case the Earth  actually behaves like a gyroscope whose main axis coincides with the 
one adopted during the impact, subjected to a disturbing torque equal but opposite to the torque  
generated by the impact.  The overall motion is apparently exactly the same, but in reality there 
are fundamental differences, as illustrated in fig.3 . 

 
  a    b 

              fig.3 
Graphics n. 3.a and 3.b represent the situation of Earth’s rotational components immediately 

before  (3.a) and after (3.b) the impact, in the case in which the Sun-Moon disturbing force has the 
same direction of the force developed by the impact.  (To make it easier to represent them, the  
precession rotational components in the illustration are greatly exaggerated; in reality they are 
more than one million times smaller than the main rotation.   The rationale however does not 
change). 

Apparently the situation has not changed, because  ωi is exactly  equal to ω’i, and ω’ has the 
same magnitude  as the previous precession speed ωpa. There is however a crucial  difference:  at 
this point ω’ is the only rotational component “fixed” with respect to the Earth’s body. Thus, the 
axis of ω’ has become axis of permanent rotation.  The rotation around it is extremely small (one 
million of times smaller than the main rotation), but  it develops in any case a centrifugal force 
strong  enough to form an equatorial bulge (of a few meters) around its axis of rotation. 

If the Earth was a solid gyroscope, this situation would last indefinitely   unchanged. The 
planet, however, is covered by a thin layer of water, which reacts immediately to any change of 
motion. 

Sea  water begins to move towards the new equator, and as this happens the value of ω’ 
increases again, therefore increasing the force which makes the water move towards the new 
equator, which in turns makes more water move towards the equator and so on.   This process 
gradually accelerates, until the centrifugal force developed by ω’ grows strong enough to induce 
deformations of the Earth’s mantle. 
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 From here on the equatorial bulge is quickly reformed  around the new axis of rotation and  
Earth will soon be stable again,  with a different axis of rotation and different poles. 

 
Value of the reaction torque developed by  Earth 

 
The value of the reaction torque developed by a gyroscope, when rotating around an axis 

different from the main, can be calculated (see fig, 4) reckoning  the torque developed by the 
element of mass, dm, rotating around the axis of ωi: 

Ci  =  Fi b 

                 
                                    fig. 4 
 
where:   
 Fi  =  dm ωi

2  r i   = dm  ωi
2  ro cos β       is the centrifugal force; 

 b   =  ro senβ     is the arm of the torque. 
 
We have therefore: 
Ci  =  dm  ro

2 
 ωi

2 senβ cosβ =  dJo ωi
2 senβ cosβ = ½ dJo ωi

2 sen2β  
where  dJo   =  dm ro

2  is the momentum of inertia of mass dm with respect to the main 
axis. 

For a ellipsoid of revolution we will have therefore: 
 
4)  C =  (Jo - Jp) ωi

2 senβcosβ  = ½   Jr ωi
2 sen2β 

where Jr = (Jo - Jp)  is the momentum of inertia of the bulge. 
 

 
                                                          fig 5  
  



 14 

Equation 4)  shows that a gyroscope may develop a reaction torque only if Jo ≠ Jp. In the 
case of it being  perfectly spherical, it would rotate indifferently around whatever axis and it 
wouldn’t have any stability. 

This is due to the fact that in a rotating homogenous sphere,  all centrifugal forces balance 
each other and there is no reaction torque, no matter what the axis of rotation is. Only the 
equatorial bulge can develop a reaction torque 

 
 
Value of the stabilising torque developed by the equatorial bulge 
 
From  equation 4)  we see that the maximum reaction torque possibly developed by a 

gyroscope is reached when β = 45o: 
 Cm = ½ Jr  ωi

2  
For Earth the value of ωi

  is almost equal to that of the main rotation, so we can assume 
that: 

ωi
2   ≅  (2π / 8,64)2 10-10 =  5,28 . 10-9   sec.-2 

The calculation of Jr can be made  by  using  the value of the centrifugal force, Fo, 
developed by the equatorial bulge due to the Earth’s rotation, as calculated by  Gallen and 
Deininger  for Hapgood (see insert at the end): 

Fo  =   4,1192. 1019  kg. 
For an approximate calculation we can put: 
Jr ≅ Mr Ro

2 
Fo  ≅ Mr  ωi

2 Ro = Jr ωi
2 / Ro 

where Mr is the mass of the bulge and Ro the radius of the Earth. 
We have then: 
Jr ≅   Fo Ro / ωi

2 ≅ 5 1034 kgmt2 
And finally, thanks to equation  4) we have: 
4’)  C =   ½   Jr ωi

2 sen2β =  1,38  1026 sen2β   kgmt 
For β = 45o we have : 
C ≅  1,38  1026  kgmt 
which is the maximum reaction torque possibly developed by Earth. 
 
 
Calculation of the size an asteroid  should have to  trigger a shifting of the poles 
 
According  to equation 4) to  overtake the reaction torque developed at an inclination, for 

instance, of 20o, an asteroid hitting the Earth must develop an impulsive torque of the following 
value: 

C20°   =   8,87 . 10 25  Kgmt.   
It is therefore easy to  estimate the size and speed  that such an asteroid must have.        
The impulsive force Fi  developed on impact with Earth by the asteroid is given by: 
Fi = Ma.a 
where: 
a = dv/dt       is the acceleration the asteroid undergoes on  impact  
Ma          is the mass of the asteroid  
To calculate the acceleration, a, we can assume the asteroid has, on  impact, a  speed: 
v = 5 . 10 4  mt/sec. 
To calculate  dt we have to rely on an estimate.  In a conservative way, considering the 

depth of known craters, we can presume that the depth of  the crater caused by that  impact to be 
500 m, which means that the speed of the asteroid  decreases from 5.104 to 0 mt/sec, in a space 
of 500 meters.   The time in which this happens  is approximately  one  hundredth of a second, 
that is:  

dt  = 0,01 sec. 
The average acceleration of the asteroid will therefore be: 
am  =  dv/dt  =    5.104 / 0,01  = 5. 106  m/sec2 
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The acceleration peak  is certainly much higher.  In a conservative calculation   we can 
assume it to be double the average value.  We  will have then:  

a = 5.10 4  / 0.005  =   10 7  mt/sec2 
And therefore: 
Fi  =  Ma .  10 7   kg 
The torque developed by this force will  obviously be: 
Ci  =  Fi . Ri 
where Ri is the arm of the torque.  
The value of Ri can be between 0 and Ro ≅ 6,4 106 mt, that is the radius of the Earth. For 

statistical reasons we can put: 
Ri = ½  Ro =  3,2  106 mt 
 The mass of the asteroid will therefore be: 

 M
F
a

C
R aa

i i

i

= = =
8 87 10

3 2 10 10

25

6 7

, .
, . .

  = 2,77 1012 kg 

 
If the density of the asteroid is of  3  Kg/dm3,  we will have a volume of: 
Va  =  0,92  km3 
that is then a lithic asteroid of approximately a 1000 metres diameter.  This calculation is 

very conservative.   We can  realistically suppose that  an object of half that size  is enough to 
develop a torque  of sufficient  value for a shift of the poles. 

 
 
 
Gallen’s calculation of the stabilising centrifugal effect of the equatorial 

bulge of the Earth 
 
Let the equations of the sphere and the ellipsoid of revolution be: 
 
1)  x2  + y2 +  z2  = b2 

2)  
x
a

y
b

z
c

2

2

2

2

2

2 1+ + =  

where  the axis of y is the axis of revolution. Take as the element of mass, dM, the ring 
generated by revolving the rectangle dxdy about the axis of y. We have: 

3)  dM = 2πδx dxdy 
where δ is the density. For each particle of the ring the centrifugal acceleration is the same, 

being equal to ω2x, where ω is the constant angular velocity in radiants per second. 
The element of centrifugal force, dF, exerted by the ring is then: 
4)  dF =  ω2x dM =  2πδω2x2 dxdy  
Integrating equation (4) with respect to x and y, there results:    

5) ( )F x dxdy b a b
b y

a
b

b y

b

b

= = −
−

−

−
∫∫2

4
2 2

2 2
2 2

2 2

2 2

πδω
π δω

 

In equation (5) F is expressed in dynes when δ is given in grams per cubic centimeter, and 
a and b in centimeters. The quantity ω  may be replaced by 2πn, where n is revolutions per 
second. The Earth makes one complete revolution in 86,164.09 mean solar seconds. 

 
 
 
 
Mrs. Deininger’s computation based on Gallen’s calculus 
 
Computation of centrifugal force produced by rotation of the bulge, 
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A.  Essential data: 
1.  The attached formula should apply to the bulge taken as 13.3443 miles at the equator, not 

the bulge as it would be if there were no flattening at the poles. 
2.  In making the calculation, Hapgood asked Mrs Harriest Deininger, of the Smith College 

faculty, to subtract three miles from the depth of the bulge, because he was concerned 
with a purely mechanical action of stabilisation, in which water could not have effect. (He 
later recognised that he subtracted about three miles too much, because he had 
disregarded isostasy, which in this case makes it probable that the rock under the oceans 
has a density higher than the density of the rock of the continents; so he should have 
subtracted the weight rather than the volume of the water. This however is a minor 
correction) 

3.  Mrs. Deininger actually took the depth of the bulge as nine miles, without the water. 
 
B. Calculation: 

( )F
sw

b a b= −
π 2 2

2 2

4
 

where s  = density in gm/cc 
  a = radius of Earth at bulge in cm 

 b = radius of Earth at poles in cm 
  w = 2 - n  r  =  rps 
2)        F    =   π4sn2. b(a3 - b3)  
 
where π =  3,1415 

s = 2,7 gm/cm3 
  n = 1/86.164 
  b = 6,402 . 108  cm 

a = 6,4165 . 108 cm (using nine miles or 
       1,450,000 cm as depth of bulge) 

 
3) F  = 4,0368 . 1025  dine  = 4,1192. 1019  kg.  
 
 

 
 
 

n Charles Hapgood, “The Path of the Pole”, Chilton Book Co, Philadefphia, 1970 
n R. F. Deimel, “Mechanics of the Gyroscope. The dinamics of Rotation”, Dover Edition, 1950 
n G.W. Wetherill, “ The Apollo objects”’Scientific American, May 79 
n Tom Geherels, “Collision with Comets and Asteroids”’ Scientific American, March 96 
n E. Spedicato, “Apollo objects, Atlantis and the deluge: a catastrophical scenario for the end of the 

last glaciation”, Quad. 90/22, 1990, Bergamo University, Italy 
 
 


