Forum

Author of the Month

Michigan Copper in the Mediterranean (cont.)
By Jay Stuart Wakefield, MES & AAPF

The Geology of Copper

Copper is said to be the most common metal on the face of the Earth with the exception of iron. However, most of it is in the form of low-grade ores that require a sequence of concentration mechanisms to upgrade it to exploitable ore through a series of proto-ores. Copper ores of the “oxidized type”, including the oxide cuprite, and carbonates (malachite) are generally green or blue, and reducible to copper metal by simple heating with charcoal. Ores of the “reduced type” are sulfides or sulfosalts (chalcocite, chalcopyrite, tetrahedrite), and are not readily identified in outcrops as ores; they require roasting to convert them to oxides, then reduction of the oxides to produce metal. There are a number of places in the world where copper can be found in small deposits in the pure state, but it is usually embedded in a rock matrix, from which it must be freed by intensive labor, or, today, crushed in huge volumes, and treated to obtain the metal.

The Unique Geology of Michigan Copper

Early in Earth’s history, there were huge volcanic outflows over the Great Lakes area. As new sediments overlaid these flows, copper solutions were crystallizing in the Precambrian flood basalts of the lava layers. The copper had been crystallized in nodules and irregular masses along fracture zones a few inches, to many feet wide. After a billion years, about a quarter of the age of the Earth, four major glaciations ground upon the edges of the old layered basalt lava beds, and exposed some of the embedded copper (Fig.2, top drawing).


Click for fullsize image

Isle Royale and the Keweenaw Peninsula remained high ridges of volcanic basalt. The scraping and digging by the glaciers, followed by surface exposure of the hardest material, the metal, was followed by sluicing of the land by glacial meltwaters. This left many mineral nodules of all sizes on the surface, in the huge pine forests. This was called “float copper”, as it appeared that it had “floated” to the surface. Nodules of copper were discovered shining in the surf along the shores of Isle Royale. The prolonged crystallization, followed by glacial exposure, was a unique sequence of events. When exploited, it took man from the stone age to an industrial world. The half billion pounds mined in prehistory were followed by six and a half billion pounds mined in the “industrial age” in America, starting in the late 1800s


Click for fullsize image

Old World Copper

Most European copper was smelted out of copper ores starting about 4460 BC. These ores often had only a concentration of 15% copper in them, and had many trace element contaminants, such as lead (Ref.19). Buried hoards of bronze are usually composed of broken axeheads, miscellaneous broken pieces, and lumps, recycling the valuable metal. Henderson’s book (Ref.19) reports a German study that did 12,000 [!] chemical analyses of copper-containing artifacts, with the aim of identifying “workshops”. They were not able to do this, but noted that “hoards which often contain low impurity metal in South-Eastern England and Northern France may be linked to the occurrence of copper ingots, which also had low impurities.” Barber (Ref.28) says that “ingot (or ‘cake’) fragments are a common feature of founder’s hoards of the late Bronze Age, and often comprise pure, unalloyed copper.” Barber says only one mining site in the British Isles (Great Orme) shows evidence of activity after the early Bronze Age. Burgess (Ref.16) says of the British Isles Bronze Age, “the remarkable thing is that metallurgy seems to have started in the south-east, apparently as early as anywhere in Britain, [though] the southeast has no local ores”.


Click for fullsize image
PreviousPage 1Page 2Page 3Page 4Page 5Page 6Next

Site design by Amazing Internet Ltd, maintenance by Synchronicity. G+. Site privacy policy. Contact us.

Dedicated Servers and Cloud Servers by Gigenet. Invert Colour Scheme / Default