Author of the Month

Is Our Reality Just a Big Video Game? (cont.)
By Jim Elvidge

Instead of implanting a device into the brain that stimulates millions of cells, or axons, why not generate millions of nanobots and give them the instructions to each find an available cell and stimulate it according to direction from a central computer. In early 2008, researchers from Northwestern and Brookhaven National Laboratory equipped gold nano-particles with DNA tentacles, and demonstrated their ability to link with neighbors to create ordered structures.5 Crystals containing as many as a million particles were built using this technology. In addition, scientists from the International Center for Young Scientists have developed a rudimentary nano-scale molecular machine that is capable of generating the logical state machine necessary to direct and control other nano-machines.6 These experiments demonstrate a nascent ability to manipulate, build, and control nano-devices, which are the fundamental premises for nanobot technology. Many well-respected technologists and futurists put the likely time frames for molecular assembly and nanobots somewhere in the 2020s. It is hard to say exactly when directed nanobot activities such as those necessary to create the reality experience mentioned above may be possible because there isn't yet a starting point from which to extrapolate Moore's Law. However, the current state of the art and common projections put the time frame 20 to 30 years out.

Of course, this would not be enough to fool us because we would still have our memory prior to the instantiation of the simulation, plus our collective set of life memories. Or can our memories be erased and replaced? Researchers at Harvard and McGill Universities used the drug propranolol in a study to dampen traumatic memories, while an amnesia drug was used in studies on rats at New York University to delete specific memories, while leaving all others intact.7 To the best of our knowledge, memories in the brain are due to strengths in synaptic connections, which in turn are due to the generation of neurochemicals, such as glutamates. In principle, it would appear that properly-programmed nanobots should have the ability to weaken or strengthen these synaptic connections, hence removing or adding memories. The likelihood that memories are distributed throughout the brain only make the programming or deprogramming more difficult, but not impossible in theory.

From these directions, it should be clear that the generation of a full-immersion simulation is not only feasible, but also likely some time in the next 20-30 years. So who is to say that we aren't already in one? In fact, Nick Bostrom's Simulation Argument makes a compelling case that we probably are.

The argument goes like this…

Someday, we will have the ability to generate and experience these simulations (the time at which this occurs is called the posthuman phase). And when we do, we would generate millions of them. From a logical standpoint, he says that one of three scenarios must be true:

1. We never get to the posthuman phase because we destroy ourselves.

2. We never get to the posthuman phase because we make a conscious decision not to pursue this technology. Personally, I throw out this scenario as unrealistic. When faced with any technology that has inherent dangers (nuclear energy, nanotech, cloning, generating energies in particle accelerators that are sufficient to create a black hole), when have we ever made a decision not to pursue it?

3. We do achieve posthumanism. And, since the odds that we are living in one of the millions of generated simulations is much higher than the odds that we just happen to be in a reality musing about the possibilities 20 years hence, we are most probably living in a simulation.

Therefore, if you subscribe to his logic and have an optimistic view of where we are going as a species, you have to conclude that we are probably living in a simulation.

However, this only addresses the scenario whereby the reality that we are living in is generated by us in the future. What if our reality is programmed, but by someone else? Other nanotech-based technologies may also be deployed this century that will create physical realities rather than simulated ones. These ideas are explored further my article "Nanotech and the Physical Manifestation of Reality".

PreviousPage 1Page 2
  1. Farley, Peter, "Programming Advanced Materials," Technology Review, January 31, 2008. [back to text]
  2. Fildes, Jonathan, "Chemical brain controls nanobots," 11 March 2008, [back to text]
  3. Christensen, Bill, "New Drug Deletes Bad Memories," 2 July 2007 post on [back to text]

Site design by Amazing Internet Ltd, maintenance by Synchronicity. G+. Site privacy policy. Contact us.

Dedicated Servers and Cloud Servers by Gigenet. Invert Colour Scheme / Default